Animating Plays in Julia with Makie.jl

Introduction

No matter what kind of project you want to tackle, you’re going to want the ability to understand what’s happening on a given play with the Big Data Bowl dataset. Easier said than done! You can go to YouTube and try to scrub through hours of film to see plays, but 1) that takes a ton of time and 2) means interfacing with the game in a meaningful way beyond manipulating a spreadsheet, which no self-respecting analytics nerd would ever do,,,

This problem has seen a lot of different approaches in previous Big Data Bowls. You can check out Nick Wan’s and Hunter Kempf’s notebooks on plotting and animating plays in Python, or Pablo Landeros' notebook on plotting and animating plays in R. But I’m not here to reinvent the wheel. I’m not some SQUARE who uses DATED PROGRAMMING LANGUAGES like some of you SHEEPLE. Besides, I’m here to push an agenda: #BringJuliaToKaggle

That’s right – we’re going to be working in Julia to produce our play visualizations. My hope is that this notebook can serve as a leaping off point for anyone who wants to do Big Data Bowl projects in Julia, and my secondary, ulterior motive is to continue to spread Julia content on Kaggle in the hopes we get dedicated support soon.

Loading in Data

To begin, let’s pull our data into our directory. I’ve already set things up with the Kaggle API to make this relatively painless. We’ll pull down not just our competition data but a few other useful visuals to help us trick out our project.

using DataFrames, CSV
function build_directory()
    run(`kaggle competitions download -c nfl-big-data-bowl-2024 --force`)
    run(`mkdir -p data`)
    run(`unzip nfl-big-data-bowl-2024.zip -d data`)
    run(`mkdir -p visuals`)
    run(`curl.exe -o visuals/bdb-logo.png https://operations.nfl.com/media/3577/big-data-bowl-transparent.png --ssl-no-revoke`)
    run(`curl.exe -o visuals/nfl-logo.png https://upload.wikimedia.org/wikipedia/en/thumb/a/a2/National_Football_League_logo.svg/745px-National_Football_League_logo.svg.png --ssl-no-revoke`)
    run(`curl.exe -o visuals/nfl-teams.csv https://raw.githubusercontent.com/nflverse/nflverse-pbp/master/teams_colors_logos.csv --ssl-no-revoke`)
    teams = CSV.read("visuals/nfl-teams.csv",DataFrame)
    for row in 1:nrow(teams)
        abbr = teams.team_abbr[row]
        run(`curl.exe -o visuals/$abbr-wordmark.png https://raw.githubusercontent.com/nflverse/nflverse-pbp/master/wordmarks/$abbr.png --ssl-no-revoke`)
    end
end
build_directory();

With our data loaded in, we can take a glimpse at what the tracking data actually looks like.

week1 = CSV.read("data/tracking_week_1.csv",DataFrame)
Row gameId playId nflId displayName frameId time jerseyNumber club playDirection x y s a dis o dir event
Int64 Int64 String7 String31 Int64 String31 String3 String15 String7 Float64 Float64 Float64 Float64 Float64 String7 String31 String31
1 2022090800 56 35472 Rodger Saffold 1 2022-09-08 20:24:05.200000 76 BUF left 88.37 27.27 1.62 1.15 0.16 231.74 147.9 NA
2 2022090800 56 35472 Rodger Saffold 2 2022-09-08 20:24:05.299999 76 BUF left 88.47 27.13 1.67 0.61 0.17 230.98 148.53 pass_arrived
3 2022090800 56 35472 Rodger Saffold 3 2022-09-08 20:24:05.400000 76 BUF left 88.56 27.01 1.57 0.49 0.15 230.98 147.05 NA
4 2022090800 56 35472 Rodger Saffold 4 2022-09-08 20:24:05.500000 76 BUF left 88.64 26.9 1.44 0.89 0.14 232.38 145.42 NA
5 2022090800 56 35472 Rodger Saffold 5 2022-09-08 20:24:05.599999 76 BUF left 88.72 26.8 1.29 1.24 0.13 233.36 141.95 NA
6 2022090800 56 35472 Rodger Saffold 6 2022-09-08 20:24:05.700000 76 BUF left 88.8 26.7 1.15 1.42 0.12 234.48 139.41 pass_outcome_caught
7 2022090800 56 35472 Rodger Saffold 7 2022-09-08 20:24:05.799999 76 BUF left 88.87 26.64 0.93 1.69 0.09 235.77 134.32 NA
8 2022090800 56 35472 Rodger Saffold 8 2022-09-08 20:24:05.900000 76 BUF left 88.91 26.59 0.68 1.74 0.07 240 131.01 NA
9 2022090800 56 35472 Rodger Saffold 9 2022-09-08 20:24:06.000000 76 BUF left 88.94 26.57 0.42 1.74 0.04 243.56 122.29 NA
10 2022090800 56 35472 Rodger Saffold 10 2022-09-08 20:24:06.099999 76 BUF left 88.95 26.58 0.14 1.83 0.01 246.07 85.87 NA
11 2022090800 56 35472 Rodger Saffold 11 2022-09-08 20:24:06.200000 76 BUF left 88.92 26.6 0.26 1.9 0.03 252.65 326.63 NA
12 2022090800 56 35472 Rodger Saffold 12 2022-09-08 20:24:06.299999 76 BUF left 88.9 26.63 0.51 2.45 0.04 257.66 315.55 NA
13 2022090800 56 35472 Rodger Saffold 13 2022-09-08 20:24:06.400000 76 BUF left 88.84 26.68 0.81 2.03 0.08 262.09 311.72 NA
1407428 2022091200 3826 NA football 42 2022-09-12 23:05:57.099999 NA football left 57.13 8.44 2.17 3.63 0.29 NA NA NA
1407429 2022091200 3826 NA football 43 2022-09-12 23:05:57.200000 NA football left 56.99 8.66 2.01 2.68 0.26 NA NA NA
1407430 2022091200 3826 NA football 44 2022-09-12 23:05:57.299999 NA football left 56.85 8.87 1.97 1.7 0.25 NA NA NA
1407431 2022091200 3826 NA football 45 2022-09-12 23:05:57.400000 NA football left 56.76 9.04 1.83 1.14 0.19 NA NA NA
1407432 2022091200 3826 NA football 46 2022-09-12 23:05:57.500000 NA football left 56.63 9.28 2.15 0.33 0.27 NA NA NA
1407433 2022091200 3826 NA football 47 2022-09-12 23:05:57.599999 NA football left 56.52 9.5 2.34 1.12 0.24 NA NA NA
1407434 2022091200 3826 NA football 48 2022-09-12 23:05:57.700000 NA football left 56.4 9.72 2.53 1.23 0.26 NA NA NA
1407435 2022091200 3826 NA football 49 2022-09-12 23:05:57.799999 NA football left 56.22 9.89 2.56 1.25 0.25 NA NA tackle
1407436 2022091200 3826 NA football 50 2022-09-12 23:05:57.900000 NA football left 56.06 10.08 2.5 1.14 0.24 NA NA NA
1407437 2022091200 3826 NA football 51 2022-09-12 23:05:58.000000 NA football left 55.89 10.27 2.38 1.7 0.25 NA NA NA
1407438 2022091200 3826 NA football 52 2022-09-12 23:05:58.099999 NA football left 55.73 10.44 2.07 2.83 0.24 NA NA NA
1407439 2022091200 3826 NA football 53 2022-09-12 23:05:58.200000 NA football left 55.57 10.57 1.86 3.0 0.2 NA NA NA

The available tracking data is split up into several different components:

  • gameId – A unique identifier assigned to each game
  • playId – A unique identifier assigned to each play
  • frameId – The frame of the play For each unique combination of gameId, playId, and frameId, we have the x and y coordinates of each player (identified with any of nflId, displayName, or jerseyNumber) as well as the football. The x and y coordinates are laid out as demonstrated in this graphic, helpfully provided by the organizers by the Big Data Bowl:

We can use this plot as a guide to generating our own graphic in Julia.

Groundskeeping

Our first step is to build the field on which plays will take place. We will use Makie.jl as the plotting library for our visuals – it’s the most flexible library for plotting in Julia, and should allow us to manipulate and animate the play we want. Specifically, we’ll import CairoMakie, which will allow us to render high quality graphics using the Cairo backend.

What’s the first step to building a football field? Laying down the grass, of course – we’ll make a green background that fits the coordinate system described in the graphic above. Note that this can take a while to render initially – after compiling everything, it should run much faster thanks to Julia magic 🪄.

using CairoMakie
function base_figure()
    f = Figure(backgroundcolor = :darkgreen, resolution = (1200,533))
    ax = Axis(f[1,1], limits = (0,120,0,53.3), backgroundcolor = :darkgreen)
    hidedecorations!(ax)
    hidespines!(ax) 
    return f, ax
end
f, ax = base_figure()
f

png

Next, we’ll be good groundskeepers and paint the lines.

using GeometryBasics
f, = base_figure()
poly!(
    Rect(0,0,120,53.3),
    strokecolor = :white, 
    strokewidth = 3, 
    color = :darkgreen
)
f

png

This football field could use some lines. Let’s bust out our tape measure and start marking out the field!

vlines!(
    10:5:110,
    color = :white
)
f

png

That’s looking good, but how will we know where the spot the ball? After all, not like there’s a chip in the football or anything,,, this field clearly needs some line numbers.

text!(
    18:10:98,
    repeat([5],9); 
    text = string.([10:10:50; 40:-10:10]),
    font="C:/Users/edwar/Documents/GitHub/bdb24/visuals/besley_heavy.otf",
    fontsize=30,
    color=:white
    )
text!(
    18:10:98,
    repeat([43.5],9); 
    text = string.([10:10:50; 40:-10:10]),
    font="C:/Users/edwar/Documents/GitHub/bdb24/visuals/besley_heavy.otf",
    fontsize=30,
    color=:white
)
f

png

Great! Now, we need some arrows, just to make sure everyone knows which way to run the ball. We can use some ASCII text art to quickly throw some on our plot.

text!(
    16.5:10:46.5, 
    repeat([6.5],4);
    text = repeat(["◂"],4),
    fontsize=20,
    color=:white
)
text!(
    16.5:10:46.5, 
    repeat([45],4);
    text = repeat(["◂"],4),
    fontsize=20,
    color=:white
)
text!(
    72.5:10:102.5, 
    repeat([6.5],4);
    text = repeat(["▸"],4),
    fontsize=20,
    color=:white
)
text!(
    72.5:10:102.5, 
    repeat([45],4);
    text = repeat(["▸"],4),
    fontsize=20,
    color=:white
)
f

png

We’re cooking so far! But how will our kickers know where to kick from? This field is in need of hash marks.

vlines!(
    10:1:110;
    ymin = 0 / 53.3, # these are a percentage of the plotting window, not absolute coordinates
    ymax = 0.6 / 53.3,
    color = :white
)
vlines!(
    10:1:110;
    ymin = 52.7 / 53.3,
    ymax = 53.3 / 53.3,
    color = :white
)
vlines!(
    10:1:110;
    ymin = 20.2 / 53.3,
    ymax = 20.8 / 53.3,
    color = :white
)
vlines!(
    10:1:110;
    ymin = 33.2 / 53.3,
    ymax = 32.6 / 53.3,
    color = :white
)
f

png

Now that’s a proper, self-respecting football field! But we’re still missing one thing… that’s right, an enormous, obnoxious logo smack dab in the center of the field. Fortunately, adding it is a cinch with Makie.

using FileIO
img = load("visuals/bdb-logo.png")
image!(
    [50,70],[18,38],rotr90(img)
)
f

png

Our field looks ready to go! We can wrap everything in a function for convenience’s sake and just call on that whenever we need to plot on top of a field.

f, = base_figure()
function plot_field(logo=false)
    # background
    # remove plot decorations
    # exterior lines
    poly!(
        Rect(0,0,120,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = :darkgreen
    )
    # interior lines
    vlines!(
        10:5:110,
        color = :white
    )
    # hash marks
    vlines!(
        10:1:110;
        ymin = 0 / 53.3, # these are a percentage of the plotting window, not absolute coordinates
        ymax = 0.6 / 53.3,
        color = :white
    )
    vlines!(
        10:1:110;
        ymin = 52.7 / 53.3,
        ymax = 53.3 / 53.3,
        color = :white
    )
    vlines!(
        10:1:110;
        ymin = 20.2 / 53.3,
        ymax = 20.8 / 53.3,
        color = :white
    )
    vlines!(
        10:1:110;
        ymin = 33.2 / 53.3,
        ymax = 32.6 / 53.3,
        color = :white
    )
    # field numbers
    text!(
        18:10:98,
        repeat([5],9); 
        text = string.([10:10:50; 40:-10:10]),
        font="C:/Users/edwar/Documents/GitHub/bdb24/visuals/besley_heavy.otf",
        fontsize=30,
        color=:white
        )
    text!(
        18:10:98,
        repeat([43.5],9); 
        text = string.([10:10:50; 40:-10:10]),
        font="C:/Users/edwar/Documents/GitHub/bdb24/visuals/besley_heavy.otf",
        fontsize=30,
        color=:white
    )
    # field arrows
    text!(
        16.5:10:46.5, 
        repeat([6.5],4);
        text = repeat(["◂"],4),
        fontsize=20,
        color=:white
    )
    text!(
        16.5:10:46.5, 
        repeat([45],4);
        text = repeat(["◂"],4),
        fontsize=20,
        color=:white
    )
    text!(
        72.5:10:102.5, 
        repeat([6.5],4);
        text = repeat(["▸"],4),
        fontsize=20,
        color=:white
    )
    text!(
        72.5:10:102.5, 
        repeat([45],4);
        text = repeat(["▸"],4),
        fontsize=20,
        color=:white
    )
    if logo
        img = load("visuals/bdb-logo.png")
        image!(
            [50,70],[18,38],rotr90(img)
        )
    end
    return f, ax
end
plot_field()
f

png

Play Action

Our next step is to plot the players on the field for a given frame. For simplicity’s sake, let’s start out just plotting a random frame from a random play in week 1.

frame = week1[(week1.gameId .== 2022091100) .& (week1.playId .== 1608) .& (week1.frameId .== 1),:]
Row gameId playId nflId displayName frameId time jerseyNumber club playDirection x y s a dis o dir event
Int64 Int64 String7 String31 Int64 String31 String3 String15 String7 Float64 Float64 Float64 Float64 Float64 String7 String31 String31
1 2022091100 1608 38607 Demario Davis 1 2022-09-11 14:14:42.400000 56 NO left 56.66 25.97 0.0 0.0 0.0 80.84 240.31 NA
2 2022091100 1608 39975 Cordarrelle Patterson 1 2022-09-11 14:14:42.400000 84 ATL left 68.78 23.69 0.0 0.0 0.0 259.23 300.66 NA
3 2022091100 1608 40017 Tyrann Mathieu 1 2022-09-11 14:14:42.400000 32 NO left 52.97 17.53 0.0 0.0 0.02 67.67 250.77 NA
4 2022091100 1608 41232 Jake Matthews 1 2022-09-11 14:14:42.400000 70 ATL left 62.45 20.62 0.0 0.0 0.0 272.22 196.4 NA
5 2022091100 1608 41257 Bradley Roby 1 2022-09-11 14:14:42.400000 21 NO left 52.82 34.89 0.11 0.45 0.01 26.97 53.25 NA
6 2022091100 1608 42345 Marcus Mariota 1 2022-09-11 14:14:42.400000 1 ATL left 62.8 23.72 0.0 0.0 0.0 256.19 167.66 NA
7 2022091100 1608 42553 Christian Ringo 1 2022-09-11 14:14:42.400000 57 NO left 60.5 24.63 0.0 0.0 0.0 87.24 96.17 NA
8 2022091100 1608 44823 Marshon Lattimore 1 2022-09-11 14:14:42.400000 23 NO left 60.29 14.52 0.0 0.0 0.0 359.05 14.58 NA
9 2022091100 1608 44851 Marcus Maye 1 2022-09-11 14:14:42.400000 6 NO left 46.55 26.75 0.67 0.9 0.07 88.19 246.27 NA
10 2022091100 1608 44862 Justin Evans 1 2022-09-11 14:14:42.400000 30 NO left 59.35 30.64 0.0 0.0 0.0 107.49 281.42 NA
11 2022091100 1608 45550 Elijah Wilkinson 1 2022-09-11 14:14:42.400000 68 ATL left 62.39 22.4 0.0 0.0 0.0 241.48 51.29 NA
12 2022091100 1608 46083 Marcus Davenport 1 2022-09-11 14:14:42.400000 92 NO left 60.41 18.29 0.0 0.0 0.0 52.63 326.14 NA
13 2022091100 1608 46197 Kentavius Street 1 2022-09-11 14:14:42.400000 91 NO left 60.44 21.83 0.0 0.0 0.0 81.96 118.2 NA
14 2022091100 1608 47797 Chris Lindstrom 1 2022-09-11 14:14:42.400000 63 ATL left 62.09 25.1 0.0 0.0 0.0 250.06 27.22 NA
15 2022091100 1608 47814 Kaleb McGary 1 2022-09-11 14:14:42.400000 76 ATL left 62.29 26.68 0.0 0.0 0.0 262.33 295.83 NA
16 2022091100 1608 48723 Parker Hesse 1 2022-09-11 14:14:42.400000 46 ATL left 62.81 29.37 0.0 0.0 0.0 250.23 209.71 NA
17 2022091100 1608 52489 Bryan Edwards 1 2022-09-11 14:14:42.400000 89 ATL left 63.57 33.01 0.0 0.0 0.0 278.91 178.09 NA
18 2022091100 1608 53433 Kyle Pitts 1 2022-09-11 14:14:42.400000 8 ATL left 62.56 27.83 0.0 0.0 0.0 221.39 299.25 NA
19 2022091100 1608 53457 Payton Turner 1 2022-09-11 14:14:42.400000 98 NO left 60.41 27.64 0.0 0.0 0.0 101.17 260.18 NA
20 2022091100 1608 53489 Pete Werner 1 2022-09-11 14:14:42.400000 20 NO left 56.45 22.09 0.0 0.0 0.0 94.74 203.69 NA
21 2022091100 1608 53543 Drew Dalman 1 2022-09-11 14:14:42.400000 67 ATL left 61.79 23.64 0.0 0.0 0.0 264.7 305.59 NA
22 2022091100 1608 54473 Drake London 1 2022-09-11 14:14:42.400000 5 ATL left 62.43 14.69 0.0 0.0 0.0 297.2 104.64 NA
23 2022091100 1608 NA football 1 2022-09-11 14:14:42.400000 NA football left 61.55 23.73 0.0 0.0 0.0 NA NA NA

We can represent all of the players on the field as little dots (as is the convention in showing this kind of tracking data). We can treat this as a scatterplot in Makie.

f, = base_figure()
plot_field()
scatter!(frame.x, frame.y)
f

png

This is a good start, but this really doesn’t show us much about the frame in question. Who belongs to which team? Who is each player? Where’s the ball???

We can identify who belongs to each team by coloring them uniquely. This can be a little tricky – some teams share primary colors, some teams share secondary colors – picking which color to use for each team is tricky! I’ve gone through and tried to pick out a dark and light variant of a color from each team’s color scheme, as well as a color for text that shows up well on both the light and dark colors. You can check out my work on this stored as a .csv here . We’ll follow this set of rules for determining the colors to be used:

  • If club is the football, color the dot brown (already covered in the .csv)
  • If club is the home team, color the dot the light-variant of the team’s color.
  • If club is the road team, color the dot the dark-variant of the team’s color.
team_colors = CSV.read(download("https://gist.githubusercontent.com/john-b-edwards/7197daa7128088f2cb5bddef4e09bfa7/raw/8af4fb83609104fa14950cde5cc31d4d95a247b9/nfl_colors.csv"), DataFrame)
games = CSV.read("data/games.csv",DataFrame)
home_away = games[:,[:gameId, :homeTeamAbbr]]
frame = innerjoin(frame,team_colors,on = :club => :team)
frame = innerjoin(frame,home_away,on = :gameId)
frame.color = ifelse.(frame.homeTeamAbbr .== frame.club, frame.dark, frame.light)
frame
Row gameId playId nflId displayName frameId time jerseyNumber club playDirection x y s a dis o dir event dark light text homeTeamAbbr color
Int64 Int64 String7 String31 Int64 String31 String3 String15 String7 Float64 Float64 Float64 Float64 Float64 String7 String31 String31 String7 String7 String7 String3 String7
1 2022091100 1608 39975 Cordarrelle Patterson 1 2022-09-11 14:14:42.400000 84 ATL left 68.78 23.69 0.0 0.0 0.0 259.23 300.66 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
2 2022091100 1608 41232 Jake Matthews 1 2022-09-11 14:14:42.400000 70 ATL left 62.45 20.62 0.0 0.0 0.0 272.22 196.4 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
3 2022091100 1608 42345 Marcus Mariota 1 2022-09-11 14:14:42.400000 1 ATL left 62.8 23.72 0.0 0.0 0.0 256.19 167.66 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
4 2022091100 1608 45550 Elijah Wilkinson 1 2022-09-11 14:14:42.400000 68 ATL left 62.39 22.4 0.0 0.0 0.0 241.48 51.29 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
5 2022091100 1608 47797 Chris Lindstrom 1 2022-09-11 14:14:42.400000 63 ATL left 62.09 25.1 0.0 0.0 0.0 250.06 27.22 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
6 2022091100 1608 47814 Kaleb McGary 1 2022-09-11 14:14:42.400000 76 ATL left 62.29 26.68 0.0 0.0 0.0 262.33 295.83 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
7 2022091100 1608 48723 Parker Hesse 1 2022-09-11 14:14:42.400000 46 ATL left 62.81 29.37 0.0 0.0 0.0 250.23 209.71 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
8 2022091100 1608 52489 Bryan Edwards 1 2022-09-11 14:14:42.400000 89 ATL left 63.57 33.01 0.0 0.0 0.0 278.91 178.09 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
9 2022091100 1608 53433 Kyle Pitts 1 2022-09-11 14:14:42.400000 8 ATL left 62.56 27.83 0.0 0.0 0.0 221.39 299.25 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
10 2022091100 1608 53543 Drew Dalman 1 2022-09-11 14:14:42.400000 67 ATL left 61.79 23.64 0.0 0.0 0.0 264.7 305.59 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
11 2022091100 1608 54473 Drake London 1 2022-09-11 14:14:42.400000 5 ATL left 62.43 14.69 0.0 0.0 0.0 297.2 104.64 NA #4b4b4b #A5ACAF #A71930 ATL #4b4b4b
12 2022091100 1608 38607 Demario Davis 1 2022-09-11 14:14:42.400000 56 NO left 56.66 25.97 0.0 0.0 0.0 80.84 240.31 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
13 2022091100 1608 40017 Tyrann Mathieu 1 2022-09-11 14:14:42.400000 32 NO left 52.97 17.53 0.0 0.0 0.02 67.67 250.77 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
14 2022091100 1608 41257 Bradley Roby 1 2022-09-11 14:14:42.400000 21 NO left 52.82 34.89 0.11 0.45 0.01 26.97 53.25 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
15 2022091100 1608 42553 Christian Ringo 1 2022-09-11 14:14:42.400000 57 NO left 60.5 24.63 0.0 0.0 0.0 87.24 96.17 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
16 2022091100 1608 44823 Marshon Lattimore 1 2022-09-11 14:14:42.400000 23 NO left 60.29 14.52 0.0 0.0 0.0 359.05 14.58 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
17 2022091100 1608 44851 Marcus Maye 1 2022-09-11 14:14:42.400000 6 NO left 46.55 26.75 0.67 0.9 0.07 88.19 246.27 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
18 2022091100 1608 44862 Justin Evans 1 2022-09-11 14:14:42.400000 30 NO left 59.35 30.64 0.0 0.0 0.0 107.49 281.42 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
19 2022091100 1608 46083 Marcus Davenport 1 2022-09-11 14:14:42.400000 92 NO left 60.41 18.29 0.0 0.0 0.0 52.63 326.14 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
20 2022091100 1608 46197 Kentavius Street 1 2022-09-11 14:14:42.400000 91 NO left 60.44 21.83 0.0 0.0 0.0 81.96 118.2 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
21 2022091100 1608 53457 Payton Turner 1 2022-09-11 14:14:42.400000 98 NO left 60.41 27.64 0.0 0.0 0.0 101.17 260.18 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
22 2022091100 1608 53489 Pete Werner 1 2022-09-11 14:14:42.400000 20 NO left 56.45 22.09 0.0 0.0 0.0 94.74 203.69 NA #101820 #FFFFFF #D3BC8D ATL #FFFFFF
23 2022091100 1608 NA football 1 2022-09-11 14:14:42.400000 NA football left 61.55 23.73 0.0 0.0 0.0 NA NA NA #825736 #825736 #825736 ATL #825736

Now that we’ve applied our color rules, we can scatter out dots on the field, and tag them as the appropriate color.

f, = base_figure()
plot_field()
scatter!(
    frame.x, 
    frame.y; 
    color = String.(frame.color), 
    markersize = 40, 
    strokewidth=2
)
f

png

To better identify the players on the field, we can also overlay their uniform numbers on top of the play.

text!(
    frame.x[frame.club .!= "football"],
    frame.y[frame.club .!= "football"];
    text = String.(frame.jerseyNumber[frame.club .!= "football"]),
    font = "Helvetica",
    fontstyle = :bold,
    fontsize=20,
    color=String.(frame.text[frame.club .!= "football"]),
    align = (:center, :center)
)
f

png

Hrm, that’s problematic – the text representing all the players overlaps significantly, causing a big mess in the middle of the scene.

It’s slightly less efficient, but let’s re-work our code to iterately place each player’s dot and then text, to fix this overlapping text issue. This is slightly less efficient from a computational lens, but this is also Julia, where everything runs lightning fast, so who the #$@! cares???

f, = base_figure()
plot_field()
for n in 1:nrow(frame)
    scatter!(
        frame.x[n], 
        frame.y[n]; 
        color = String.(frame.color[n]), 
        markersize = 40, 
        strokewidth=2
    )
    if frame.club[n] != "football"
        text!(
            frame.x[n],
            frame.y[n];
            text = String.(frame.jerseyNumber[n]),
            font = "Helvetica",
            fontstyle = :bold,
            fontsize=20,
            color=String.(frame.text[n]),
            align = (:center, :center)
        )
    end
end
f

png

Visually, that looks much better – we’re going for a “player tokens” look, and this captures that vibe quite well.

Speaking of tokens – that football looks pretty whack. Who ever heard of a round football? This isn’t Europe, we call that soccer in these here parts. 🇺🇸

function football()
    # from https://upload.wikimedia.org/wikipedia/commons/2/2d/American_football_icon_simple_flat.svg
    football_string = "M260.23 242.48C470.17 49.91 703.98 47.53 770.09 50.38c54.62 2.3575 100.81 8.0024 121.59 12.397 34.724 7.3432 25.195 7.327 46.702 33.008 21.507 25.681 34.249 26.987 35.022 68.388.63801 34.21 5.9807 206.33-60.35 357.28-66.33 150.96-113.03 188.58-173.28 243.85-60.25 55.26-197.57 142.87-350.57 174.11-79.27 16.19-298.03 7.65-312.03-10.34-5.637-8.26-14.161-17.48-20.932-22.5-15.188-16.56-25.367-51.22-26.948-79.87-1.581-28.65-13.148-189.89 60.548-346.12 73.692-156.24 170.39-238.1 170.39-238.1z"
    symbol = BezierPath(football_string, fit = true)
    return(symbol)
end 

f, = base_figure()
plot_field()

for n in 1:nrow(frame)
    if frame.club[n] != "football"
    scatter!(
        frame.x[n], 
        frame.y[n]; 
        color = String.(frame.color[n]), 
        markersize = 40, 
        strokewidth=2
    )
    text!(
        frame.x[n],
        frame.y[n];
        text = String.(frame.jerseyNumber[n]),
        font = "Helvetica",
        fontstyle = :bold,
        fontsize=20,
        color=String.(frame.text[n]),
        align = (:center, :center)
    )
    else
        scatter!(
            frame.x[n], 
            frame.y[n]; 
            marker = football(),
            color = String.(frame.color[n]), 
            rotations = pi / 4,
            markersize = 25, 
            strokewidth=2
        )
    end
end
f

png

Looking great so far! We can wrap this in a function to make plotting the players a little easier.

function plot_players(frame)
    for n in 1:nrow(frame)
        if frame.club[n] != "football"
        scatter!(
            frame.x[n], 
            frame.y[n]; 
            color = String.(frame.color[n]), 
            markersize = 40, 
            strokewidth=2
        )
        text!(
            frame.x[n],
            frame.y[n];
            text = String.(frame.jerseyNumber[n]),
            font = "Helvetica",
            fontstyle = :bold,
            fontsize=20,
            color=String.(frame.text[n]),
            align = (:center, :center)
        )
        else
            scatter!(
                frame.x[n], 
                frame.y[n]; 
                marker = football(),
                color = String.(frame.color[n]), 
                rotations = pi / 4,
                markersize = 25, 
                strokewidth=2
            )
        end
    end
end
f, = base_figure()
plot_field()
plot_players(frame)
f

png

Decorating the Field

Next step – those end-zones are looking awful empty. Let’s try filling them up with some wordmarks, courtesy of the kind folks at the {nflverse} (I hear they’re a great bunch, very handsome, that John Edwards fella in particular).

We’ll first figure out who the team with the ball is on the play, then figure out which direction the play is going offensively – left to right. From there, we’ll plot the wordmark of the defensive team in the end-zone in the direction of the play, and the possession team in the opposite end-zone. Let’s pull in the plays.csv file and join it to figure out which team has the ball. We can then read in wordmarks for the possessing and defensive teams:

plays = CSV.read("data/plays.csv",DataFrame)
pos_team = plays[:,[:gameId, :playId, :possessionTeam, :defensiveTeam, :yardlineSide, :yardlineNumber, :yardsToGo]]
frame = innerjoin(frame,pos_team,on = [:gameId, :playId])
using Images
wordmark_pos = load("visuals/" * frame.possessionTeam[1] * "-wordmark.png")
wordmark_def = load("visuals/" * frame.defensiveTeam[1] * "-wordmark.png")

That wordmark is looking good! Next step – we’ll figure out the play direction, and based on that, plot the wordmarks (along with the team colors) in the correct endzones.

f, = base_figure()
plot_field()
# plot the end-zones
# we do this first to make sure the end-zones are layered under the players!
if frame.playDirection[1] == "left"
    poly!(
        Rect(0,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.defensiveTeam .== frame.club][1])
    )
    poly!(
        Rect(110,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.possessionTeam .== frame.club][1])
    )
    image!(
        [120,110],[53,0],wordmark_pos
    )
    image!(
        [0,10],[0,53],wordmark_def
    )
else
    poly!(
        Rect(0,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.possessionTeam .== frame.club][1])
    )
    poly!(
        Rect(110,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.defensiveTeam .== frame.club][1])
    )
    image!(
        [120,110],[53,0],wordmark_def
    )
    image!(
        [0,10],[0,53],wordmark_pos
    )
end
# okay, now we can plot the players
plot_players(frame)
f

png

Oh helllllllll yeah. Alright, we’re missing one more thing. We want this to look at least a little like what it does on TV, so to make things clearer, we’re going to use the play data and plot the line of scrimmage in blue and the line to gain in yellow. We’ll wrap this into the same logic that determines which way to place the end-zones (and which way the ball is going):

f, = base_figure()
plot_field()
yardline_100 = ifelse(frame.yardlineSide[1] == frame.possessionTeam[1],50 - (50 - frame.yardlineNumber[1]), 50 + (50 - frame.yardlineNumber[1]))
if frame.playDirection[1] == "left"
    poly!(
        Rect(0,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.defensiveTeam .== frame.club][1])
    )
    poly!(
        Rect(110,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.possessionTeam .== frame.club][1])
    )
    image!(
        [120,110],[53,0],wordmark_pos
    )
    image!(
        [0,10],[0,53],wordmark_def
    )
    # line of scrimmage in blue, dashed
    vlines!(
        110 - yardline_100,
        color = :blue,
        linestyle = :dash
    )
    # line to gain -- in yellow, of course
    vlines!(
        110 - yardline_100 - frame.yardsToGo[1],
        color = :yellow,
        linestyle = :dash
    )
else
    poly!(
        Rect(0,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.possessionTeam .== frame.club][1])
    )
    poly!(
        Rect(110,0,10,53.3),
        strokecolor = :white, 
        strokewidth = 3, 
        color = String(frame.color[frame.defensiveTeam .== frame.club][1])
    )
    image!(
        [120,110],[53,0],wordmark_def
    )
    image!(
        [0,10],[0,53],wordmark_pos
    )
    vlines!(
        10 + yardline_100,
        color = :blue,
        linestyle = :dash
    )
    vlines!(
        10 + yardline_100 + frame.yardsToGo[1],
        color = :yellow,
        linestyle = :dash
    )
end
plot_players(frame)
f

png

Putting it all together

Terrific, looks like our field is ready to go. Like the other parts of the plot, let’s wrap it in a function.

function plot_ez_and_lines(frame)
    wordmark_pos = load("visuals/" * frame.possessionTeam[1] * "-wordmark.png")
    wordmark_def = load("visuals/" * frame.defensiveTeam[1] * "-wordmark.png")  
    yardline_100 = ifelse(frame.yardlineSide[1] == frame.possessionTeam[1],50 - (50 - frame.yardlineNumber[1]), 50 + (50 - frame.yardlineNumber[1]))
    if frame.playDirection[1] == "left"
        
        poly!(
            Rect(0,0,10,53.3),
            strokecolor = :white, 
            strokewidth = 3, 
            color = String(frame.color[frame.defensiveTeam .== frame.club][1])
        )
        poly!(
            Rect(110,0,10,53.3),
            strokecolor = :white, 
            strokewidth = 3, 
            color = String(frame.color[frame.possessionTeam .== frame.club][1])
        )
        image!(
            [120,110],[53,0],wordmark_pos
        )
        image!(
            [0,10],[0,53],wordmark_def
        )
        vlines!(
            110 - yardline_100,
            color = :blue,
            linestyle = :dash
        )
        vlines!(
            110 - yardline_100 - frame.yardsToGo[1],
            color = :yellow,
            linestyle = :dash
        )
    else
        poly!(
            Rect(0,0,10,53.3),
            strokecolor = :white, 
            strokewidth = 3, 
            color = String(frame.color[frame.possessionTeam .== frame.club][1])
        )
        poly!(
            Rect(110,0,10,53.3),
            strokecolor = :white, 
            strokewidth = 3, 
            color = String(frame.color[frame.defensiveTeam .== frame.club][1])
        )
        image!(
            [120,110],[53,0],wordmark_def
        )
        image!(
            [0,10],[0,53],wordmark_pos
        )
        vlines!(
            10 + yardline_100,
            color = :blue,
            linestyle = :dash
        )
        vlines!(
            10 + yardline_100 + frame.yardsToGo[1],
            color = :yellow,
            linestyle = :dash
        )
    end
end
plot_ez_and_lines (generic function with 1 method)

Now with just a couple of lines, we can plot any frame from any play:

new_frame = week1[(week1.gameId .== 2022091109) .& (week1.playId .== 2404) .& (week1.frameId .== 5),:]
new_frame = innerjoin(new_frame,team_colors,on = :club => :team)
new_frame = innerjoin(new_frame,home_away,on = :gameId)
new_frame.color = ifelse.(new_frame.homeTeamAbbr .== new_frame.club, new_frame.dark, new_frame.light)
new_frame = innerjoin(new_frame,pos_team,on = [:gameId, :playId])
f, = base_figure()
plot_field()
plot_ez_and_lines(new_frame)
plot_players(new_frame)
f

png

We’ll want the ability to functionalize this further, to make it easier to plot the frames of individual plays. To do this, let’s prepare a DataFrame with all of the information we’ll need to plot plays, and turn it into a function to load it into memory.

function plot_df(weeks = 1:9, data_dir = "data")
    # read in data
    plays = CSV.read(data_dir * "/plays.csv",DataFrame)
    team_colors = CSV.read(download("https://gist.githubusercontent.com/john-b-edwards/7197daa7128088f2cb5bddef4e09bfa7/raw/8af4fb83609104fa14950cde5cc31d4d95a247b9/nfl_colors.csv"), DataFrame)
    games = CSV.read(data_dir * "/games.csv",DataFrame)
    home_away = games[:,[:gameId, :homeTeamAbbr]]
    dfs = [CSV.read(data_dir * "/tracking_week_" * string(week) * ".csv",DataFrame) for week in weeks]
    df = vcat(dfs...)
    df = innerjoin(df,team_colors,on = :club => :team)
    df = innerjoin(df,home_away,on = :gameId)
    df.color = ifelse.(df.homeTeamAbbr .== df.club, df.dark, df.light)
    df = innerjoin(df,pos_team,on = [:gameId, :playId])
    return(df)
end
main_df = plot_df()
Row gameId playId nflId displayName frameId time jerseyNumber club playDirection x y s a dis o dir event dark light text homeTeamAbbr color possessionTeam defensiveTeam yardlineSide yardlineNumber yardsToGo
Int64 Int64 String7 String31 Int64 String31 String3 String15 String7 Float64 Float64 Float64 Float64 Float64 String7 String31 String31 String7 String7 String7 String3 String7 String3 String3 String3 Int64 Int64
1 2022090800 56 35472 Rodger Saffold 1 2022-09-08 20:24:05.200000 76 BUF left 88.37 27.27 1.62 1.15 0.16 231.74 147.9 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
2 2022090800 56 35472 Rodger Saffold 2 2022-09-08 20:24:05.299999 76 BUF left 88.47 27.13 1.67 0.61 0.17 230.98 148.53 pass_arrived #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
3 2022090800 56 35472 Rodger Saffold 3 2022-09-08 20:24:05.400000 76 BUF left 88.56 27.01 1.57 0.49 0.15 230.98 147.05 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
4 2022090800 56 35472 Rodger Saffold 4 2022-09-08 20:24:05.500000 76 BUF left 88.64 26.9 1.44 0.89 0.14 232.38 145.42 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
5 2022090800 56 35472 Rodger Saffold 5 2022-09-08 20:24:05.599999 76 BUF left 88.72 26.8 1.29 1.24 0.13 233.36 141.95 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
6 2022090800 56 35472 Rodger Saffold 6 2022-09-08 20:24:05.700000 76 BUF left 88.8 26.7 1.15 1.42 0.12 234.48 139.41 pass_outcome_caught #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
7 2022090800 56 35472 Rodger Saffold 7 2022-09-08 20:24:05.799999 76 BUF left 88.87 26.64 0.93 1.69 0.09 235.77 134.32 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
8 2022090800 56 35472 Rodger Saffold 8 2022-09-08 20:24:05.900000 76 BUF left 88.91 26.59 0.68 1.74 0.07 240 131.01 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
9 2022090800 56 35472 Rodger Saffold 9 2022-09-08 20:24:06.000000 76 BUF left 88.94 26.57 0.42 1.74 0.04 243.56 122.29 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
10 2022090800 56 35472 Rodger Saffold 10 2022-09-08 20:24:06.099999 76 BUF left 88.95 26.58 0.14 1.83 0.01 246.07 85.87 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
11 2022090800 56 35472 Rodger Saffold 11 2022-09-08 20:24:06.200000 76 BUF left 88.92 26.6 0.26 1.9 0.03 252.65 326.63 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
12 2022090800 56 35472 Rodger Saffold 12 2022-09-08 20:24:06.299999 76 BUF left 88.9 26.63 0.51 2.45 0.04 257.66 315.55 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
13 2022090800 56 35472 Rodger Saffold 13 2022-09-08 20:24:06.400000 76 BUF left 88.84 26.68 0.81 2.03 0.08 262.09 311.72 NA #C60C30 #ffffff #00338D LA #ffffff BUF LA BUF 25 10
12187387 2022110700 3787 NA football 33 2022-11-07 23:06:48.500000 NA football right 24.68 20.48 3.76 5.15 0.47 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187388 2022110700 3787 NA football 34 2022-11-07 23:06:48.599999 NA football right 25.0 20.33 3.34 4.0 0.36 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187389 2022110700 3787 NA football 35 2022-11-07 23:06:48.700000 NA football right 25.29 20.2 2.99 3.17 0.31 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187390 2022110700 3787 NA football 36 2022-11-07 23:06:48.799999 NA football right 25.54 20.07 2.72 2.7 0.29 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187391 2022110700 3787 NA football 37 2022-11-07 23:06:48.900000 NA football right 25.76 19.93 2.49 2.37 0.26 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187392 2022110700 3787 NA football 38 2022-11-07 23:06:49.000000 NA football right 25.95 19.85 2.06 2.56 0.2 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187393 2022110700 3787 NA football 39 2022-11-07 23:06:49.099999 NA football right 26.1 19.76 1.69 2.6 0.17 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187394 2022110700 3787 NA football 40 2022-11-07 23:06:49.200000 NA football right 26.22 19.68 1.37 2.58 0.15 NA NA tackle #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187395 2022110700 3787 NA football 41 2022-11-07 23:06:49.299999 NA football right 26.32 19.61 1.07 2.74 0.12 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187396 2022110700 3787 NA football 42 2022-11-07 23:06:49.400000 NA football right 26.39 19.56 0.8 2.49 0.09 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187397 2022110700 3787 NA football 43 2022-11-07 23:06:49.500000 NA football right 26.45 19.52 0.57 2.38 0.07 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10
12187398 2022110700 3787 NA football 44 2022-11-07 23:06:49.599999 NA football right 26.49 19.5 0.35 2.13 0.05 NA NA NA #825736 #825736 #825736 NO #825736 NO BAL NO 11 10

Now, we can make a function to just plot any frame of any play we query.

function plot_frame(df, gameId, playId, frameId)
    f, = base_figure()
    plot_field()
    frame = df[(df.gameId .== gameId) .& (df.playId .== playId) .& (df.frameId .== frameId),:]
    plot_ez_and_lines(frame)
    plot_players(frame)
    return(f)
end
plot_frame(main_df, 2022100908, 210, 40)

png

So we can now plot any frame from any play. How do we coalesce this into an animation of the play? Makie allows us to make a Gif of a play super easily, with the record() function. We’ll simply filter down to a specific play, then iterate over all the frames of the play and record each plot, then string those together to create a play animation.

function animate_play(df, gameId, playId)
    frames = 1:maximum(df.frameId[(df.gameId .== gameId) .& (df.playId .== playId)])
    # we buffer the animation with some still frames to make looping a little less jumpy
    frames = [repeat([1],5);frames;repeat([maximum(df.frameId[(df.gameId .== gameId) .& (df.playId .== playId)])],5)]
    f, ax = base_figure()
    record(f, "play.gif", frames; framerate = 15) do frame
        empty!(ax)
        plot_field()
        plot_ez_and_lines(df[(df.gameId .== gameId) .& (df.playId .== playId) .& (df.frameId .== frame),:])
        plot_players(df[(df.gameId .== gameId) .& (df.playId .== playId) .& (df.frameId .== frame),:])
    end
end
animate_play(main_df, 2022100908, 210)
"play.gif"

gif

Extensions

I’m going to put a bow on this notebook here – however, there are a ton of additional extensions others can pursue with the logic laid out in this notebook. Makie is remarkably flexible and allows for a ton of customization, and Julia as a language provides a ton of opportunities for BDB work. Some examples of potential ways to extend this work:

I hope you found this notebook helpful, and I hope this sparked some interest in the wonderful language of Julia! Happy tackling!

Reply to this post on Bluesky to leave a comment